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An alumina with 3 wt% glassy phase was tested at different loading rates at two temperatures 
(900 and lO00~ was found that an increase in fracture toughness was accompanied by 
a decrease of the bending strength at the same loading rates. A model is given, which describes 
the experimental results by linear viscoelasticity of the second phase. Whereas the bulk properties 
are mainly due to the alumina grains and, therefore, remain nearly unchanged, the crack growth 
and the fracture behaviour in the intergranular regions is dominated by the viscosity of the glassy 
phase. This leads to a non-unique value of KIc, which is dependent on the temperature and the 
loading rate. 

1. Introduction 
The strength behaviour of ceramics especially under 
high-temperature conditions is of particular interest. 
In contrast to the subcritical crack growth at room 
temperature, which is mainly due to the corrosive 
influence of the environment [1, 2] (usually the partial 
pressure of water vapour), the crack growth at high 
temperatures is a consequence of diffusion, creep and 
viscoelasticity. Because there are different mechanisms 
which control the mechanical behaviour in the differ- 
ent temperature regions, it is difficult to define general 
material properties such as fracture toughness, 
bending or tensile strength. Some studies on the mechan- 
ical behaviour of different ceramics with a glassy 
phase have shown that the fracture toughness is not 
constant at high temperatures [3, 4], yet the problem 
is not well understood. In this work a model, which 
shows the influence of the sintering additives on the 
mechanical behaviour of ceramics at elevated temper- 
atures, is proposed. Alumina was chosen as a model 
material, because it can be sintered with and without 
glassy phase. Thus one can compare results of alumina 
with glassy phase with measurements of the pure 
material to determine the influence of the viscous 
phase [3] or the influence of different loading condi- 
tions [5, 6]. 

2. Experimental procedure 
The material tested was an alumina with 3 wt % 
glassy phase. The second phase was mainly localized 
in the grain boundaries and the triple points, and its 
composition was determined by energy dispersive 
spectroscopy (EDS) and can be seen in Table I. The 
amount of alumina in the glassy phase is questionable, 
because the surrounding alumina grains may influence 
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T A B L E  I Composit ion of the glassy phase 

at % wt % Formula Comp. % 

Si 23.1 31.8 SiO2 68.1 
AI 9.0 11.9 AlzO3 22.4 
Ca 1.4 2.8 CaO 3.9 
Mg 1.9 2.2 MgO 3.7 
Na 1.3 1.4 NazO 1.9 

T A B L E II Some material properties of the tested alumina 

Density 3760 kg m -  3 
Grain size ~ 10 /am 
Young's modulus  (RT) 342 GPa  
KI~ (RT) 3.8 +_ 0.6 M P a m  1/2 

the measurement. The medium grain size was l0 gin, 
the largest grains were about 70 ~tm. Table II shows 
further material parameters [4]. 

The material was tested in a hydraulic testing ap- 
paratus containing a four-point bending device with 
a fixed roller system at a span of 20/40 mm, described 
in detail elsewhere [7]. The size of the tested speci- 
mens was 3 • 4 x 45 mm 3 according to DIN-standard 
51110. High temperature was achieved by induction 
heating, and all tests were performed in air. For 
K~c tests, the specimens were cut with a diamond saw 
equipped with a 501.tin blade in order to achieve 
a notch width below 100 gin. The notch depth to 
specimen width ratio was chosen 0.2 < a / W <  0.3, 
according to DIN proposal 51109. 

3. Results 
Fig. 1 shows the dependence of fracture toughness, 
Kic, and bending strength, ~B, on the loading rate, 6; 
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Figure 1 (�9 Fracture toughness, Kl~ , and ([]) bending strength, 
c%, at 900 ~ versus loading rate, log d. 

at 900 ~ It is well known that the bending strength 
for four-point bending is given by 

and KI~ by 

3Fe  
c~B ~- B W  2 (la) 

3 F e  
K,~ - - -  B W  2 Y(rca) 1/2 (lb) 

where F is the fracture force, B and W the breadth and 
width of the specimen, respectively, and e the leaver 
arm. The experiments were performed at different 
constant loading rates, 6 and/<.  If one differentiates 
Equation lb with respect to the time, one can see that 

-- g ( rca) l /2  (2) 

According to this equation, it is possible to plot 
bending strength values as well as fracture toughness 
values in the same diagram (see Fig. 1). Each point 
represents the mean value of five tests, the bars show 
the mean deviation. 

The most interesting point to be seen in this dia- 
gram is that starting from high loading rates from the 
right-hand side of the diagram, the bending strength 
decreases, whereas the K~r values start to increase at 
the same loading rate. For the low and high loading 
rates, the fracture appearance is different (the scanning 
electron micrographs are taken from the fracture sur- 
faces of the K~-tested specimens): there is mainly in- 
tercrystalline fracture at the lowest loading rate of 
/ < = 0 . 0 0 3 M P a m l / 2 s  -1 (Fig. 2a), with the glassy 
phase at the grain boundaries, whereas for a loading 
rate o f /<  = 300 MPa  m ~,,2 s -  J, fracture is transcrys- 
talline (Fig. 2b) and no glassy phase can be identified. 

At the higher temperature of 1000~ one can see 
that the loading rate, at which the bending strength 
starts to decrease, moved to a significant higher level 
(Fig. 3), from which one can conclude that this effect 
may be a consequence of viscosity. The K~r values 
again start to increase at the same loading rate, then 
they go through a maximum and turn out to have the 
same value for the lowest as well as for the  highest 
loading rates (read from right to left in Fig. 3). The 
scanning electron micrographs show intercrystal- 
line fracture for the low loading rate of 
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Figure 2 Scanning electron micrographs at (a) the lowest loading 
rate of/< = 0.003 MPa m ~12 s- ~, ~ ~ = 0.03 MPa s- i and (b) the 
high loading rate of /<=300MParnl/2s-1, ~6~3000 
MPas -t, at 900~ 
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Figure 3 (�9 Fracture toughness, Kt+ and ([5]) bending strength, ~B, 
at 1000 ~ versus loading rate, log d. 

/~ = 0.003 M P a m  1/2 s -1 (Fig. 4a). The glassy phase is 
clearly visible as "fingers" at the grain boundaries. 
For a loading rate of / < = 0 . 0 3 M P a m l / 2 s - 1  
(Fig. 4b), the location where the maximum in K~c 
appears, one can see a mixed-mode fracture, which 
resembles the micrographs for the lower loading rate 
at 900~ and only for very high loading rates of 
/< = 300 MPa  m ~/2 s-~ (Fig. 4c) is fracture again trans- 
crystalline. These scanning electron micrographs 



Figure 4 Scanning electron micrographs at (a) the lowest loading 
rate of /~ = 0.003 MPam~/2s -~, ~ 6- = 0.03 MPas  -1, (b) the 
loading rate of / s  = 0.03 MPam~/2s-1,  ~ 6- = 0.3 MPas  -~ near 
the maximum of Kit, and (c) the high loading rate of 
/ < = 3 0 0 M P a m l / 2 s  -1, ~ 6 - = 3 0 0 0 M P a s  l, a l lat  1000~ 

clearly show the influence of the glassy phase on the 
crack extension. 

4 .  D i s c u s s i o n  
From the experimental data it can be stated that the 
second phase begins to "soften" at a certain point, 
which is dependent on the temperature (and thus on 
the Viscosity of the glassy phase) as well as on the 
loading rate. This critical point in the loading rate 
corresponds to a certain relaxation time ~(6, T). At 
loading rates lower than the loading rate, which 
allows firstly a relaxation time r, the "softening" of the 
second phase promotes the separation of grains and 
therefore a subcritical crack growth, which leads to 
a decrease in the bending strength. On the other hand, 
the "softening" of the viscous phase is responsible for 
a stress relaxation at the crack tip in the same regime 
of loading rates. This, however, leads to an increase of 
K~o, because now the effective stress at the crack tip 
decreases. An increase in crack length due to sub- 
critical crack growth has no effect on K~c, because it is 
small in comparison to the depth of the notch. 

The relaxation behaviour can be described by 
a model of springs and dashpots. If one assumes a 
linear viscoelastic behaviour for one Maxwell element, 
the total strain rate is 

6 er 
~:tot = - + -  (3) 

E q 

where r I is the viscosity of the dashpot and E the 
Young's modulus of the spring. Equation 3 can be 
solved for the spring and the dashpot, respectively. 

Then the strain of each element is given by 
t 

/~s = ~ t o t  f e - z 

e~ = gtott(1 - e -~) (4) 

where the subscript s denotes the spring, and d the 
dashpot. 

= n / E  (5) 

is the relaxation time. If the stress has time to relax, 
there exists a "process region", into which the stress 
can expand. In this region there is a number of grain 
boundaries with glassy phase of different thickness at 
its triple points�9 The mechanical behaviour of these 
viscous parts is now modelled by a Gaussian distribu- 
tion of a number, N, of dashpots with different viscosi- 
ties and thus by different relaxation times around ~ . . . .  

according to Equation 5, see Fig. 5 
�9 N 2 

z i = "Cmaxe -h(t-g)  i =  1 - N  (6) 

l i m b  ~'E-- 

vt I 112 11N 

Figure 5 Model of the system of Maxwell-elements, which take up 
the strain at the crack tip. 
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with h the half width of the distribution. As a conse- 
quence, one has to write Equation 4 for different 
elements i 

t 

G~ = ~o, te ~ (7a) 
t 

%, = ~to, t(1 -- e -5 )  (7b) 

with ~ the different relaxation times characteristic for 
each element. The total strain which the specimen can 
sustain, is 

N 

= Y,  + (81 
i = i  

where N is the number of the elements. Now, there is 
no difference in time-developing the strain or in time- 
developing the K-factor under the rough presumption 
that the bulk of the specimen still behaves in a linear 
elastic way. The only assumption is that the K-factor 
behaves in a time-dependent manner at the crack tip, 
in the same way as the strain defined above. Then one 
can write Equations 7a and b for the time-develop- 
ment of the K-factors of spring and dashpot 

t 

K~ = / s  (9a) 

Ka, = /~t(1 - e-~,) (9b) 

One can assume that for very high loading rates the 
material is brittle and the mechanical behaviour is 
dominated by the springs. Therefore, the maximum of 
the K-factor for the springs, which is K~c~, can be taken 
from the experiments at very high loading rates. For 
very low loading rates the viscous phase has no influ- 
ence, the hard alumina grains are in direct contact 
with each other and behave in a brittle manner as is 
the case for the very high loading rates. Under these 
circumstances, the material can be classified as 
porous, therefore K~ for low loading rates is expected 
to be less or equal to the K~o value for very high 
loading rates. For that reason the value from the 
experiments with the lowest loading rates is taken for 
the maximum of the K-factors for the dashpots, K~c~, if 
no experimental values are available, which exhibit 
that K~c is lower for the low loading rates. The 
measurements at 1000 ~ presented in Fig. 3, show 
that Klc(/~high)- Klc(/~low). For 900~ the lowest 
loading rates are not extended to this regime (Fig. 1). 
Nevertheless, former experiments in three-point 
bending [3] show the same feature at 900 ~ 

Kic ~ ~-- KIc ( /~h igh)  (10a) 

K ~  = K~o(/s (lOb) 

KIc~ = Ktc(Khigh) 

K~(/<low) 
= KIc~ (lOc) 

In the intermediate regime it is possible for the vtscous 
phase to relax at the crack tip. This corresponds to the 
fact that in the mathematical model, springs as well as 
dashpots take a part  of the strain. The operating K is 
then 

N 

K'ot = S (Ks, + Kd,) (11) 
i = I  
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Figure 6 Dependence of the computations on the distribution of the 
relaxation times for h = 10 -4, 10 -s and 10 -2 in Equation 6. 
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Figure 7 Calculations for the models (a) with "cm, x = 10000 s and 
h = 0.0001 at 900~ and (b) with "['max = 250S and h = 0.004 at 
1000 ~ 

The time-development is computed numerically and 
Equation 11 is stopped, if either the boundary condi- 
tion for the spring Ks, = Ktc~ or for the dashpot 
Kd,  = Klc~, see Equations 10a-c, is reached. Then for 
a given loading rate, K~c = K~c(t, z). 

By this, one has two parameters, which can be 
varied to minimize the deviation of the calculated 
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K~ from the measured values. First, the main para- 
meter is r . . . .  which is responsible for the maximum of 
Krc. The second parameter is the half-width, h, of the 
Gaussian distribution and corresponds to the width of 
the distribution of the increased K~c values. In fact, 
these two parameters are not independent: if one has 
a very small distribution, the peak in the K~ value is 
high, whereas for flat distributions, which range over 
several decades, the peak is not very distinct (see 
Fig. 6). Thus, the result is rather unique and simple. In 
contrast to other models, which try to describe viscous 
effects, this model needs essentially only one para- 
meter, the relaxation time (or thus the viscosity), 
whereas former approaches are based on a number of 
assumptions, which can hardly be determined, e.g. [8]. 

The minimum of the deviation from the experi- 
mental values is found by varying Zma~ and h simulta- 
neously. The results are the fits in Fig. 7a and b with 
"~max = 10000S for 900~ Because only one slope 
could be used for the fit in Fig. 7a, this value is an 
estimation, but, as mentioned before, the low loading 
rates could not be extended to the maximum with the 
hydraulic test equipment. Vm,x changes to 250 s for 
1000 ~ The curves are not smooth, because we re- 
stricted ourselves to 100 Maxwell-elements and did 
not compute a dense network in order to keep the 
computing time reasonably low. 

5. O u t l o o k  
From the first parameter rmax = qmax/E, the mean 
viscosity, ~]max, can be calculated. The real viscosity 
cannot be determined by this method, because E, the 
Young's modulus of the glassy phase, is not known, 
but it should be possible for the manufacturer to 
measure it. In our experiment only the relative viscos- 
ity of the second phase at 900 and 1000 ~ can be 
determined. The simplest approach is to choose an 
Arrhenius equation for the viscosities, e.g. 

In rl-Z1 = c (12) 
% r l  To 

In the literature, an increase in K~ was also found, 
when the experiments were performed only at one 
loading rate, but for different temperatures [9]. From 
Equation 12 we obtain 

C 
In q T - constant (13) 

With q = ~/E and l~ma x OC /~ -  1 which can be obtained 
by time-developing Equation 9 and checking the re- 
sults for different ~, we find 

C1 
ln/< + ~ = constant (14) 

Thus, we can conclude 

K~( /~ ,T)  = F ( l n / ( + T )  (15) 

From the measurements at 900 and 1000 ~ the para- 
meters Cl and the constant in Equation 14 can be 
determined as c~ = 22 050 K and the constant = 15.6. 

From this, we obtain Fig. 8. Here the peaks at the 
lower temperatures are drawn higher according to the 
fit in Fig. 7a, because it is reasonable to assume that 
the "process region" is smaller, if the viscosity of the 
second phase is higher. This is in accordance with 
K~c measurements by Kromp and Pabst [3]. If we take 
this effect into account, the results in Fig. 8 are 
reached. Of course, the decrease in the maximum of 
the peak of the K~o is an estimated value. 

This estimation, however, is supported by the 
results in three-point bending with different spans in 
a crosshead speed-controlled [3] and in a displace- 
ment-controlled experiment [4]. Despite the different 
loading conditions, these results show principally the 
same behaviour, with the only difference being that 
the maximum appears at a different loading rate than 
for four-point bending. Fig. 9a shows these values and 
the previous results 1-3] at 900 ~ and in Fig. 9b the 
values of K~c are shown for 1000 ~ The difference can 
be qualitatively explained by the fact that in four- 
point bending the region around the notch is loaded 
with a stress at a constant level. For three-point 
bending, however, the stress around the notch 
decreases with the distance from the notch, therefore 
the loaded volume is much smaller. Therefore, relax- 
ation takes less time, and thus the maximum of the 
Kjo values is shifted to higher loading rates. This effect 
is more pronounced for the lower temperature, be- 
cause of the higher viscosity of the glassy phase at the 
lower temperature. The ratio of the relaxation times of 
three-point to four-point bending is therefore higher 
for 900 ~ than for 1000 ~ 

From these experimental results one can calculate 
the dependence of K~ on temperature and loading 
rate for three-point bending in the same way as was 
shown for four-point bending. The results are pre- 
sented in Fig. 10, with cl = 14250 K and the con- 
stant = 12.1 in Equation 15. 

As a consequence, the loading rate and also the 
mode of testing must be taken into account. The 
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Figure 8 Dependence of K~ values of temperature and loading rate 
in four-point bending. 
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Figure 10 Dependence of Kj~ values on temperature and loading 
rate in three-point bending. 

intention of this study, however, was not to give 
a complete description of the material A1203 with 
glassy phase, which would involve too great an experi- 
mental expense. Figs 8 and 10 should show the prin- 
cipal mechanical behaviour of ceramics with a second 
phase at high temperatures. According to this, it is our 
opinion that there exists no unique K~ value at high 
temperatures for ceramics with glassy sintering 
additives. Even if tests are carried out at the same 
temperatures and at the same loading rates, it is not 
possible to compare the results, because one could be 
looking at a point near the peak in the case of one 
material and far from the peak in the case of another 
one, which is due to the different viscosities of their 
second phases. Only by measurements at two temper- 
atures at least, and different loading rates or at two 
loading rates and different temperatures one can de- 
scribe the mechanical behaviour according to the 
model presented. In practice, however, this would lead 
to high costs for the material and the experimental 
tests. On the other hand, materials with glassy phase 
will rarely find an application at temperatures where 
the glassy phase is fluid. Experiments should therefore 
be carried out at high loading rates and moderate 
temperatures, where the definition of Klc as a material 
constant still holds. 
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